Type YPR-1S Pressure Reducing Valve For Steam

This pressure reducing valve, which is used for construction facilities and industrial steam lines, demonstrates stable control and subtle operations. It features an outstanding performance even with severe changes in the steam flow and primary pressure.

- Features

- Pilot-type pressure reducing valve for steam features a precise adjustment function.
- With only a single adjustment, a constant pressure level is maintained, thereby ensuring safety.
- Convenient piping construction, thanks to its simple structure and solidity.
- Superb performance even in places where primary steam pressure changes are severe.
- Pressure at a constant level, regardless of changes in the secondary flow.

- Specifications

Applicable fluid	Steam
Primary pressure	Maximum $10 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$
Secondary pressure regulating range	$0.35 \sim 5 \mathrm{kgf} / \mathrm{cm}^{2} \mathrm{~g}$ (for standard pressure) $4 \sim 8 \mathrm{kgf} / \mathrm{cm}^{2} \mathrm{~g}$ (for medium pressure)
Maximum pressure reduction ratio	$10: 1$
Minimum differential pressure in the inlet and outlet side of the valve	$0.7 \mathrm{kgf} / \mathrm{cm}^{2}$
Leakage allowance	0.05% less of rated flow
Fluid temperature	$220^{\circ} \mathrm{C}$ below
End connection	
Body	$\mathrm{KS} \mathrm{10K} \mathrm{RF} \mathrm{FLANGE}$
Materials	GC200
Hydraulic test pressure	$\mathrm{BC6}$
Disc, seat	

- Strainer (over 80 Mesh) installation is required to ahead inlet when valve installing.
- Install a water separator at the inlet of the pressure reducing valve to ensure the removal of condensate.
- Dimensions

Size	L	H1	H2	d	Cv	Weight (kg)
15(1⁄2")	152	63	230	1/4"	1	8.0
20(3/4")	152	63	230	$1 / 4 \mathrm{l}$	2.5	8.0
25(1")	170	71	255	$1 / 4 \mathrm{l}$	4	12.5
32(11/4")	200	81	265	$1 / 4 \mathrm{l}$	6.5	16
40(11/2")	200	81	265	$1 / 4 \mathrm{l}$	9	16.5
50(2")	215	86	270	$1 / 4 \mathrm{l}$	16	21
65(21/2")	245	110	285	3/8"	25	29
80(3")	285	130	295	3/8"	36	39.5
100(4")	320	148	308	3/8"	64	68
125(5")	380	173	368	3/8"	100	83.3
150(6")	420	189	378	3/8"	144	101
200(8")	500	229	451	3/8"	256	183

Dimensional drawing

- Application Diagram (Example)

Type YPR-1S Pressure Reducing Valve

- Chart on selecting a size

How to select the size of a valve by the chart

Example) If the primary pressure is $6 \mathrm{kgf} / \mathrm{cm}^{2} \mathrm{~g}$, secondary pressure is $4 \mathrm{kgf} / \mathrm{cm}^{2} \mathrm{~g}$, and flow is $6,000 \mathrm{~kg} / \mathrm{h}$,

1) Determine "A," the point of intersection between the primary pressure ($6 \mathrm{kgf} / \mathrm{cm}^{2} \mathrm{~g}$) and secondary pressure $\left(4 \mathrm{kgf} / \mathrm{cm}^{2} \mathrm{~g}\right)$. Go down vertically from "A" to make intersection "B" with the flow ($6,000 \mathrm{~kg} / \mathrm{h}$).
2) This " B " is what determines the size of the valve. It is in between a size of 125 and 150 , and therefore a size of 150 should be selected.
